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Purpose: Contouring variation is one of the largest systematic uncertainties in radiotherapy, yet its
effect on clinical outcome has never been analyzed quantitatively. We propose a novel, robust
methodology to locally quantify target contour variation in a large patient cohort and find where this
variation correlates with treatment outcome. We demonstrate its use on biochemical recurrence for
prostate cancer patients.
Method: We propose to compare each patient’s target contours to a consistent and unbiased refer-
ence. This reference was created by auto-contouring each patient’s target using an externally trained
deep learning algorithm. Local contour deviation measured from the reference to the manual contour
was projected to a common frame of reference, creating contour deviation maps for each patient. By
stacking the contour deviation maps, time to event was modeled pixel-wise using a multivariate Cox
proportional hazards model (CPHM). Hazard ratio (HR) maps for each covariate were created, and
regions of significance found using cluster-based permutation testing on the z-statistics. This method-
ology was applied to clinical target volume (CTV) contours, containing only the prostate gland, from
232 intermediate- and high-risk prostate cancer patients. The reference contours were created using
ADMIRE® v3.4 (Elekta AB, Sweden). Local contour deviations were computed in a spherical coor-
dinate frame, where differences between reference and clinical contours were projected in a 2D map
corresponding to sampling across the coronal and transverse angles every 3°. Time to biochemical
recurrence was modeled using the pixel-wise CPHM analysis accounting for contour deviation,
patient age, Gleason score, and treated CTV volume.
Results: We successfully applied the proposed methodology to a large patient cohort containing data
from 232 patients. In this patient cohort, our analysis highlighted regions where the contour variation was
related to biochemical recurrence, producing expected and unexpected results: (a) the interface between
prostate–bladder and prostate–seminal vesicle interfaces where increase in the manual contour relative to
the reference was related to a reduction of risk of biochemical recurrence by 4–8% per mm and (b) the
prostate’s right, anterior and posterior regions where an increase in the manual contour relative to the
reference contours was related to an increase in risk of biochemical recurrence by 8–24% per mm.
Conclusion: We proposed and successfully applied a novel methodology to explore the correlation
between contour variation and treatment outcome. We analyzed the effect of contour deviation of
the prostate CTV on biochemical recurrence for a cohort of more than 200 prostate cancer patients
while taking basic clinical variables into account. Applying this methodology to a larger dataset
including additional clinically important covariates and externally validating it can more robustly
identify regions where contour variation directly relates to treatment outcome. For example, in the
prostate case we use to demonstrate our novel methodology, external validation will help confirm
or reject the counter-intuitive results (larger contours resulting in higher risk). Ultimately, the
results of this methodology could inform contouring protocols based on actual patient outcomes.
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1. INTRODUCTION

Prostate cancer is the second most common cancer in men
worldwide1 and approximately 30-60% of cases will be trea-
ted with curative-intent radiotherapy.2,3 Radiotherapy relies
on accurate definition of the target volume, that is, the region
where the prescribed dose of radiation is to be delivered.
However, target definition is subjective, and is known to vary
between observers; known as interobserver variability (IOV).
Variation in contouring systematically deforms the planned
dose distribution relative to the (unknown) true target, poten-
tially delivering lower dose than required to the cancer cells
and influencing the effectiveness of treatment.4

Despite the known presence of IOV in target contours, as
far as the authors are aware, its effect on clinical outcomes
has never been analyzed quantitatively. Typically, IOV is
quantified in studies where multiple observers contour the
same structure on patient images.5–7 As drawing these con-
tours takes a long time and requires expertise, most studies
include only a limited number of observers on a limited num-
ber of patient cases.7 Furthermore, variations are often
reduced to a single number, where all spatial information is
lost; typically Dice similarity coefficient or Hausdorff dis-
tance.7 For example, computing the Dice similarity coeffi-
cient of two structures involves only their respective volumes
and overlap, this results in a single scalar value that contains
no spatial information and it is impossible to infer how each
spatial region contributed to the metric. These two draw-
backs, a small cohort and the simplification of the contour
differences into a single number, makes it impossible to effec-
tively analyze the spatial effects of IOVon clinical outcome.

In recent years, automatic contouring of structures has
been made possible using deep learning (DL) techniques.8

For some organs, DL auto-contoured structures are of compa-
rable quality to those drawn by an observer.9–12 Additionally,
advances in computational tools are also being used to
automatize and improve clinical target volumes (CTVs)
beyond anatomical organs.13 Contours produced by DL con-
touring tools can therefore be seen as being drawn by a vir-
tual observer that is highly consistent and unbiased to data
beyond the medical image being segmented.

In this study, we present a novel methodology to quantify
the effect of contour deviations on clinical outcome. The
methodology relies on quantifying local contour deviations
by comparing the manually delineated contour with the DL
generated contour, which is used as an arbitrary yet consistent
reference. These local contour deviations are then analyzed
statistically to define regions where observer deviation corre-
lates with outcome, taking clinical variables into account.14 A
major advantage of this approach is that instead of being
restricted to a limited IOV study setting, it can exploit the
information contained in large quantities of routine clinical

data. As a first application of this novel methodology, we
analyzed the effect of contour deviation of the prostate CTV
on biochemical recurrence for a cohort of prostate cancer
patients treated with radical radiotherapy.

2. MATERIALS AND METHODS

2.A. Patient dataset

Two hundred and forty-seven intermediate- and high-risk
prostate cancer patients, treated between 2007 and 2013 at a
single institution (The Christie Hospital NHS Foundation
Trust) with 57 Gy in 19 fractions of intensity-modulated
radiotherapy were included in this study. Patients were setup
via an empty bladder and rectum protocol, both for planning
and treatment. Patients were followed up for at least 4 yr as
standard of care and biochemical recurrence status, defined
as a rise in the blood level of prostate-specific antigen (PSA)
of 2 ng/ml above nadir after treatment, was stored for all
patients. The characteristics of this cohort are summarized in
Table I. Each patient had one CTV contour encompassing
the prostate gland only, defined by the treating oncologist.
This contour shall be referred to as the manual contour. All
data were collected from the ukCAT distributed learning
database (ethics approval from the UK North West - Haydock
Research Ethics Committee, reference number 17/NW/0060,
local approval consent ukCAT ref. 2018-018).

For each patient, a DL auto-contour of the prostate gland
was generated as a reference using the research version of
ADMIRE® v3.4, (Elekta AB, Sweden).

TABLE I. Characteristics of the cohort of prostate cancer patients, before and
after refinement.

Variable

Original (n = 247) Refined (n = 232)

Nr % Nr %

Gleason score

6 30 12 25 11

7 134 54 128 55

8 42 17 39 17

9-10 41 17 40 17

Age (years)

<65 82 33 75 33

65-75 147 60 140 60

>75 18 7 17 7

Recurrence

Yes 83 34 74 32

No 164 66 158 68

The refined dataset includes only patients whose clinical target volume was lim-
ited to the prostate gland, and without anomalies in their contour deviation maps.
For patients with a biochemical recurrence, the mean time to event was 4.80 yr
(0.85–8.46 yr).
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2.B. Quantifying local contour deviations

Figure 1 shows the steps for quantifying local contour
deviations. The reference DL contour, and the manual con-
tour are first triangulated into 3D surfaces using the marching
cubes algorithm.15 Then, using a similar approach as Remei-
jer et al.16 local contouring deviation was measured in spheri-
cal polar coordinates. Contour deviation, δR, as a function of
angles Θ (for the coronal plane) and φ (for the transverse
plane) was defined as.

δR θ,ϕð Þ ¼ OM
!

$j jOR
!!!!

!!! (1)

where distances jOM
!

j and jOR
!

j are quantified from the center
of mass of the DL reference contour (O) in the direction deter-
mined by Θ and φ [blue arrow in Fig. 1(b)] to the point of
intersection with the surface of the manual (M) and DL refer-
ence contour (R), respectively [Fig. 1(b)]. By sampling the
coronal and transverse angles every 3o, contour deviation maps
of 60x120 pixels were created for each patient [Fig. 1(c)].

2.C. Cohort refinement

To ensure consistency in the input data, we curated the
patient data. First, the manual contour of each patient was
visually verified to ensure the contour only contained the
prostate gland, that is, to ensure a consistent contouring pro-
tocol in the dataset. Second, the quality of the DL contour
was visually verified. Patients with seminal vesicles included
in the manual contour or where the DL contouring failed
were removed from analysis [see Fig. 2]. Third, the contour
deviation map of each patient was visually verified to ensure
intuitive deviation, (i.e., in the order of mm), in all directions.
Patients with local anomalies, δR θ, ϕð Þ, often in the order of
10 cm, were removed. The cause of this problem was traced
back to holes in the triangulation of contours into surfaces
(see Fig. S1 in the supplementary materials). Visual verifica-
tion was performed by AJ and TSM, to ensure consistency of
contours rather than clinical correctness.

In addition to cohort refinement, we assessed the similar-
ity between the DL contour and manual contour to identify if
systematic differences exist across the cohort. We assessed
this and report the following metrics: histogram of Dice simi-
larity coefficient, scatter plot of DL vs manual contour vol-
umes, three scatter plots of the DL vs manual contour x, y,
and z center-of-mass coordinates, respectively, and boxplots
of δR values in each region from Fig. 3.

2.D. Pixel-wise survival analysis

We assumed that each pixel in the contour deviation map
referred to a consistent anatomical location.16 For each pixel
in the contour deviation maps, time to biochemical recur-
rence was modeled using a multivariable Cox proportional
hazard model (CPHM) accounting for contour deviation,
patient age, Gleason score, and manual CTV volume. Note
that the last three variables were constant for all pixels for a
single patient. This methodology has been developed by
Green, et al.14 and in their publication details the develop-
ment of the statistical technique. It is important to note that
Green’s implementation is validated with respect to the “Sur-
vival” toolkit in R17; the R code for a single voxel is exempli-
fied by Fig. S2 in the supplementary materials. By
assembling the hazard ratios (HRs) of the 7200 CPHM in the
60 × 120 grid, HR maps for each variable were created.
Regions of significance were found using the cluster-based
permutation test on the z-statistics18 (104 permutations).
Ranges of HRs on each interface and within each prostate
region are reported by extracting them using eight rectangular
regions of interest (see Fig. 3).

3. RESULTS

3.A. Cohort refinement

From the original 247 patients, seven were removed as
their manual contour included the seminal vesicles, one
because of DL failure, and nine were removed due to local

FIG. 1. Method to obtain a contour deviation map for a given patient from the manual and the DL reference contours of the CTV, as shown in (a).
Contours are each triangulated to form a surface and a spherical polar coordinate system, centered at the center of mass of the auto-contour (O) is
defined, as shown in (b). At each 3° × 3° angle, the difference between the distances from O to the manual contour and the DL reference contour
δR(θ, φ) is calculated [Eq. (1)], to construct a single patient contour deviation map, shown in (c). Maps of hundreds of patients are next correlated
with clinical outcome. [Color figure can be viewed at wileyonlinelibrary.com]
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anomalies in surface reconstruction, leaving 232 patients for
analysis (Table I, Fig. 2).

When assessing the similarity between the DL contour
and manual contour, we found that the Dice similarity coeffi-
cient for the contours was on average 0.81 (range 0.41–0.92)
(see supplementary materials, Fig. S3). A scatter plot of the
DL vs manual contour volume revealed that the manual con-
tour has a consistently larger volume on average than the DL
contour (see supplementary materials, Fig. S4). Boxplots of

δR values in each region from Fig. 3, revealed that median
δR values were positive and different across all regions; this
confirmed our observation from Fig. S2, but also identified
the posterior apex region as that with greatest systematic
over-contouring (see supplementary materials, Fig. S5).
Scatter plots of the x, y, and z center-of-mass coordinates for
the DL and manual contour revealed no systematic shifts in
coordinates across the cohort (see supplementary materials,
Fig. S6).

FIG. 2. Examples of the axial and lateral projections of the deep learning (DL) auto-contour (blue) and the manual contour (red) created for each patient. These
images were used to identify and remove patients from the analysis if their seminal vesicles are included in the manual contour, or if the DL contouring has failed.
(a) A patient kept in the analysis with only their prostate in the manual contour. (b) A patient removed from the analysis with their prostate and seminal vesicles
in the manual contour. (c) The only patient where DL contouring failed (due to artifacts caused by bilateral metal hips) was also removed. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 3. The shaded rectangular kernels shown here represent regions and interfaces of interest on the prostate, which were used to calculate the range of Hazard
ratios for the confounding variables. The dimensions (x,y) of each kernel is denoted in its upper left and is measured in pixels. [Color figure can be viewed at
wileyonlinelibrary.com]
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3.B. Pixel-wise survival analysis

Figures 4 and 5 show the HR maps for the considered
variables in the CPHM. The effect of contouring deviation,
δR(Θ,φ), against biochemical recurrence, controlling for
Gleason score, age, and manual CTV volume is shown in
Fig. 5. The contours encapsulate varying statistically signifi-
cant regions of HR < 1 and HR > 1. This result shows that
per mm increase in the manual contour relative to the DL ref-
erence in the prostate–bladder and prostate–seminal vesicle
interfaces, reduces the risk of biochemical recurrence by
4–8% (P < 0.05). Conversely, per mm increase in the manual
contour relative to the DL reference in the prostate’s right,
anterior and posterior regions, increases the risk of biochemi-
cal recurrence by 8–24% (P < 0.01). Figure 5 shows HR
maps for the controlled confounding variables. Patient age
showed a significant relationship in the bladder and seminal
vesicles interfaces, and the posterior and apical regions
(P < 0.05) as shown in Fig. 5(a). This implies an interaction
between contour variation, age, and biochemical recurrence.
Manual CTV volume shows a significant relationship with
biochemical recurrence throughout the prostate’s superior
(P < 0.001), as shown in Fig. 5(b). When Gleason scores 7
and 8 are compared to Gleason score 9–10, as shown in
Figs 5(c)–5(d), all values in the HR maps are less than unity,
as expected. Throughout Fig. 5(c) all values are statistically
significant (P < 0.05), however, only the region contoured is

statistically significant for Fig. 5(d). This shows that patients
with a Gleason score lower than 9–10 have a reduced relative
risk of biochemical recurrence, which is an intuitive result,
with some interaction with contour variation. Table II dis-
plays the range of HRs on each interface and within each
prostate region, extracted using the rectangular regions
defined in Fig. 3.

4. DISCUSSION

In this study we proposed a novel methodology to analyze
the effect of contouring uncertainty on clinical outcome for a
large cohort of patients. Here, we used our method on the
prostate site and demonstrated how to identify regions where
contour deviation and recurrence are correlated, by measur-
ing the deviation of each patient’s clinical contour relative to
a highly consistent reference contour and applying pixel-wise
CPHM, followed by permutation testing. It is important to
notice that this methodology can be used to explore relation-
ships to other outcomes as well.

After applying our proposed methodology to a cohort of
232 prostate cancer patients, we found regions where contour
deviations were correlated with biochemical recurrence. In
detail, we observed:

• A per mm increase in the manual contour relative to
the DL reference in the prostate’s bladder and seminal

FIG. 4. Hazard ratio (HR) map for contouring deviation. Regions of significance are contoured. The map suggests that contouring larger volumes in the left
region, bladder, and seminal vesicle interfaces could lead to better biochemical control. This HR map is modulated by all variables included in the analysis.
[Color figure can be viewed at wileyonlinelibrary.com]
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vesicle interfaces is related to a reduction of the risk of
biochemical recurrence by 4–8% (P < 0.05). This can
be interpreted as having larger manual contours in
these regions is associated with improved control.

• A per mm increase in the manual contour relative to
the DL reference in the prostate’s right, anterior, and
posterior regions, is related to an increase in the risk of
biochemical recurrence by 8–24% (P < 0.01). This

means that larger manual contours in these regions are
associated with poorer control.

To the best of our knowledge, this is the first investigation
showing a direct effect of contouring variation on biochemi-
cal recurrence following prostate radiotherapy. For the pixel-
wise CPHM analysis, we included the Gleason score at diag-
nosis, patient age at the start of treatment, manual CTV

FIG. 5. The Hazard ratio (HR) maps of the risk of recurrence for the confounding variables modulated by the spatially varying contour deviation. (a) Age per year
increase, (b) Manual CTV volume per cm3 increase, (c) Gleason score 7 relative to 9–10, and (d) Gleason score 8 relative to 9–10. Notice that every HR map is
based on modeling all variables included in the analysis. [Color figure can be viewed at wileyonlinelibrary.com]
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volume, and contour deviation. However, the presence of the
counter-intuitive observation made, that larger tumor cover-
age may increase the risk of recurrence, potentially invali-
dates the more logical one. This clearly points to the need to
correct for additional confounding variables. Confounding
variables missing from the analysis may influence the inter-
pretation and significance of our findings. Such additional
variables include the PSA level on diagnosis, spatial variation
of the planned target dose, and the patient’s rectum volume
upon planning, which are all known to affect the risk of bio-
chemical recurrence.19–21 This analysis should therefore be
repeated in a cohort, preferable larger, where these covariates
are available. In addition, the pixel-wise CPHM needs to be
internally and externally validated to ensure the observed
HRs will generalize well to new patient data, from a variety
of different populations. These additional steps will help turn
our observations into conclusions, and ultimately translate
these results into the clinic.

HR maps of the other covariates also had significant
regions (Fig. 5), indicating that contour deviation is not the
only variable affecting survival, which is not surprising.
Interpretation of the HR maps is less intuitive than the con-
tour deviation maps. The HR maps of the confounding vari-
ables will be approximately constant when there is no
interaction between contouring deviation and the confound-
ing variable. This is clearly the case for age. However, the HR
maps of prostate volume shows different HR for different
regions, which is logical because delineation deviation and
volume change have the same effect — a motion of the delin-
eated contours. The most interesting interaction is for Glea-
son scores (7 and 8 relative to 9–10) which both suggest an
increase in risk of delineation deviation for higher Gleason
scores. We also checked whether there was a correlation
between Gleason score and manual CTV volume, however,
this was not observed (see supplementary materials, Fig. S7).

Classical contouring variation studies require the contours
of multiple observers, often oncologists: an expensive
resource. In a recent review of IOV, the number of patients
range between 1 and 26 for prostate cancer cases.7 Such a
limited number of patients makes meaningful analysis of clin-
ical outcomes impossible. In our novel approach, we use a
DL auto-contour as a reference to quantify contour deviation
for more than 200 patients. Despite the clinical correctness of
DL auto-contours being debatable, it provides a consistent

baseline to compare the manual (clinically used) contour. As
DL only uses the image dataset as input, clinical circum-
stances cannot influence the results of the DL model, mean-
ing that detected deviations are not confounded by such
clinical variables. However, it is important to note that the DL
model will consistently reproduce any bias present in the
training data, which may be the reason of the DL contours
are smaller than the manual on average. Recent developments
are starting to handle CTV definition automatically13 which,
if implemented clinically, may improve consistency for future
patients. For our work, we visually inspected the contours
and removed failed DL contours, therefore minimizing the
impact of image quality on DL contouring. Retraining the
DL model is beyond our reach as we used commercial tools.
As discussed in the results section, we observed that the man-
ual contour is consistently larger on average than the DL con-
tour (see supplementary materials, Fig. S4), and also found
that the manual contour is systematically larger in all regions
of interest from Fig. 3 (see supplementary materials, Fig.
S5). This consistent difference does not affect the estimates
resulting from our analysis: the estimate for δR for each Cox
model (at each pixel) is determined from the spread of δR,
rather than its absolute value. Having a reference structure
that is consistently smaller will only affect the intercept term
at each pixel from the Cox model, which is not of interest
here.

For the current analysis, contour deviation maps were
extracted using a spherical coordinate system centered on the
DL reference contour. This assumes that the same spherical
direction (i.e., Θ and φ) will capture the same anatomical
prostate region for all patients. This assumption is likely valid
for convex organs which shape and orientation is similar
among patients, such as the prostate. A similar assumption
was made by Witte et al.19 for image-based data mining.
However, further work on improving interpatient mapping of
structures to a common frame of reference could further
improve the results and allow this methodology to be
extended to nonconvex structures.

For our current analysis, we explored the magnitude of δR
and its relation to biochemical recurrence. As the contours of
the prostate shape the region of high dose, we assumed that
radial variations on these contours would indirectly relate to
treatment failure. Our method could be adapted if directional
variability is of interest, where instead of looking at the

TABLE II. Range of Hazard ratio (HR) for each covariate at different regions across the prostate, extracted from the HR maps shown in Figs. 4 and 5, using the
regions of interest defined in Fig. 3.

Region Prostate Volume (per cc) Age (per year) Gleason score 7 (rel. 9–10) Gleason score 8 (rel. 9–10) Contour variation (per mm)

Posterior 1.007–1.011 0.954–0.968 0.546–0.592 0.514–0.626 1.002–1.236
Right 1.003–1.011 0.963–0.974 0.544–0.645 0.538–0.717 0.994–1.201
Anterior Apex 1.007–1.011 0.958–0.986 0.552–0.636 0.542–0.666 0.987–1.190
Posterior Apex 1.009–1.011 0.962–0.970 0.504–0.613 0.527–0.649 0.948–1.151
Seminal vesicles 1.008–1.013 0.958–0.969 0.547–0.600 0.560–0.608 0.916–1.078
Left 1.008–1.013 0.962–0.969 0.548–0.591 0.550–0.610 0.952–1.188
Bladder 1.004–1.016 0.962–0.971 0.476–0.598 0.454–0.628 0.915–1.088
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magnitude of δR, we could look at its vector components
separately (e.g., right–left, anterior–posterior, or inferiorsupe-
rior components).

For the studied patient cohort, our method produced both
expected and unexpected results when relating contour devia-
tions to biochemical recurrence, for example larger contours
around the seminal vesicles predict better control, but larger
contours around the posterior region predict worse control.
As such, these results should be interpreted with caution and
extra analysis on an external and larger dataset should be per-
formed before translating them into clinical practice. These
results also highlight the need to include deviation cross-cor-
relations introduced by observer contouring “styles” into the
analysis. The effect of these cross-correlations could be mini-
mized by including a large number of observers to reduce the
bias on contouring style. Alternatively, the observer identifi-
cation could be added as a confounding categorical variable
in the CPHM. In our case, individual observers could not be
identified from the retrospective data and therefore, this effect
could not be accounted for in our analysis. Other deviation
correlations may be introduced by the observer’s level of
expertise and the individual interpretation of the local con-
touring protocol factors that could be included in future stud-
ies.22–24

From the HR map for contouring deviation, as presented
here, regions are identified where clinical contours could be
altered in order to limit a patient’s risk of biochemical recur-
rence following prostate radiotherapy. Again, we highlight
that it is important to notice our methodology can be used to
explore relationships between contouring and any outcome.
As a result, competing risk models could be built on top of
our methodology and used to highlight the regions where
contouring deviation should be reduced to find the optimal
therapeutic ratio. Thus, our developed methodology could be
used to better define protocols for contouring, and potentially
improve patient outcomes, once applied to a dataset where
the aforementioned additional covariates are available, and an
internal and external validation has been conducted. Further-
more, the methodology proposed here could be adapted to
other radiotherapy treatment sites.

The primary goal of this manuscript was to introduce a
methodology to explore the correlations between contour
variation and outcome. The general framework followed by
our method, that is, image-based data-mining or voxel-based
analysis, been used in neuroimaging for over a decade25,26

and it has been successfully used to explore radiotherapy
dose and outcome in several sites.19,27–29 We refer the inter-
ested reader to the recent article by Palma et al. where a
“Cookbook” dedicated to this method for use in radiation
oncology is presented30 and a critical editorial on the impor-
tance of correct statistical analysis.31

5. CONCLUSION

We have proposed a novel method to analyze the effect
of contouring variation on clinical outcome for a large
cohort of patients using deviations to a consistent virtual

observer. We exemplify our methodology on a cohort of
prostate cancer patients, and use time to biochemical recur-
rence following treatment as our outcome. Regions were
identified in which contour deviations of the prostate relate
to biochemical recurrence, with some expected and unex-
pected results (produced both expected and unexpected
results). After including relevant covariates and validating
results with an external dataset, results from this methodol-
ogy could inform contouring protocols based on actual
patient outcomes.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig S1. Each patient’s deviation map was inspected to
identify and remove patients with local contouring anomalies
induced by triangulating each contour into a surface. (a) The
deviation map of a patient, kept in the analysis. (b) The
deviation map of a patient with a local anomaly of order
10 cm, removed from the analysis.
Fig S2. Example code snippet demonstrating the equivalent
R code to perform pixel-wise cox proportional hazard model
toolbox using the “survival” package.
Fig S3. Distribution of Dice similarity coefficient across the
entire patient cohort. Dice similarity coefficient measures the
spatial overlap between the volume of the manual contours
and the DL algorithm contours. The majority of Dice
coefficients were greater than 0.8, suggesting high similarity
between the DL and manual contours.
Fig S4. Scatter plot showing the volume of the manual
contour against the volume of the deep learning algorithm.
We observe a tendency of the datapoints to be below the line
of unity (dashed line), meaning that the DL CTVs were
smaller than the manual CTVs. The y = 0.659x+5.333 line
is the fitted linear model (R^2 = 0.867).
Fig S5. The distribution of ∂R pixel values for regions and
interfaces of interest on the prostate, defined in Figure 3 in
the main manuscript, indicating systematic differences across
all regions. All median ∂R values are ≥0 cm agreeing with
Figure S4 showing that the DL segmentations are
systematically smaller than the manual contours. One-way
ANOVA test showed significant systematic differences over
all regions of interest (F-score = 1.08e4, P < 10e-4). This
systematic variation is expected as contour variation has been
reported to be different in different regions.
Fig S6. Scatter plots of the centre-of-mass of the manual
contours (y-axis) against the DL contours (x-axis) in the x
plane (right-left), y-plane and z-plane shown in (a), (b) and
(c) respectively. The null hypothesis that distributions of x, y
and z centre-of-mass coordinates between manual and DL
contours have equal means, has been tested using a two-
sample t-test. We found no significant evidence to suggest the
means centre-of-mass coordinates are different in x
(P = 0.64), y (P = 0.64), and z (P = 0.98).
Fig S7. Distribution of the clinical target volume (CTV) for
patients with different Gleason scores. We performed a one-
way analysis of variation (ANOVA) to test if there were
differences for the CTV patients with different Gleason score
groups (F-score = 1.9196, P = 0.127). The insignificant
score suggests that the Gleason score of the patient has an
insignificant interaction with their defined CTV.
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