Inferring the control signal driving zebrafish locomotion

A central objective in neuroscience is to understand how the brain orchestrates movement. Recent
advances in automated tracking technologies have made it possible to generate rich behavioral datasets
that can be exploited to gain insights into the neural control of movement. One approach to analyzing
such data is to identify stereotypical motor primitives using cluster analysis. However, this categorical
description can limit our ability to model the effect of more continuous control schemes. Here, we take a
control theoretic approach to behavioral modeling and argue that movements can be understood as the
output of a controlled dynamical system. Previously, models of movement dynamics, trained solely on
behavioral data, have been effective in reproducing observed features of neural activity. These models
addressed specific scenarios where animals were trained to execute particular movements upon receiving
a prompt. In this study, we extend this approach to analyze the full natural locomotor repertoire of an
animal: the zebrafish larva. Our findings demonstrate that this repertoire can be effectively generated
through a sparse control signal driving a latent Recurrent Neural Network (RNN). Our model’s learned
latent space preserves features relevant to the fish’s navigation while disentangling different categories
of movements. Collectively the control signal and dynamics we identified offer a novel framework for
understanding neural activity in relation to movement.

Behavioral dataset and Model Zebrafish larvae swim
using discrete episodes of propulsion, known as swim A

bouts, which typically last around 200ms. We charac- 5l —AN~- —Afn—
terized the posture of the fish by measuring the bending B
angle along the tail (see Fig. 1A.) and compiled a dataset _AAa—

from observations of 100 freely-swimming larvae. Using
methods from [1], we segmented the data into swim bouts i

—NAAL—
which we classified into 11 distinct kinematic categories WY
(see Fig. 1A.). To characterize zebrafish locomotion, we B, Movement generating
sought to learn dynamical systems that were able to gen- dynamics

erate its locomotor repertoire (see Fig. 1B.). f( )

Here, our goal is to identify both the latent control sig-
nals and the underlying dynamics that make up the com-
plete locomotor repertoire of the zebrafish larva. Learn-
ing the dynamics of a system driven by unobserved in-
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puts is a challenging system identification problem. We inputs® |

tackled it using the recently proposed iLQR-VAE method oo '

2], to learn the latent RNN and infer the control signals Inference

from time series of behavioral observations. We assumed Fig. 1. (A) Samples of swim bouts from each
that the dynamics were driven by a sparse set of inputs. category.(B) Illustration of the model setup.
Specifically, we followed [2] and used a Student-t prior

distribution. This choice is consistent with biological observations. Indeed, sparse electrical activation
of brainstem neurons projecting to the spinal cord has been shown to be sufficient to elicit forward lo-
comotion or escape [3,4]. The heavy-tailedness of the prior is thus well suited to inferring large sporadic
inputs that may trigger swim bouts while encouraging the model to capture most behavioral segments
via strong, near-automonous dynamics.

Low-dimensional, sparse control of larval zebrafish locomotion To find the models that best de-
scribed the data, we varied the dimensions of the control signal and of the latent size, as well as the
RNN architecture. We considered both linear and non-linear RNNs. We evaluated models based on
both (i) their ability to reconstruct the data, and (ii) the sparsity of the inferred control signals. We
found that all trained models could generate accurate reconstructions of our dataset (R* > 0.94). The
high reconstruction fidelity can be attributed to the inherently low-dimensional nature of behavioral
recordings. Yet, we found that matching the observations using a very sparse control was challenging,
and possible only for the largest and most expressive models (non-linear RNN). Here, we found that
the model’s multivariate control impulse arose right before the onset of movement (see Fig. 2A.), thus
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Fig. 2. (A) Example bout reconstruction (R? = 0.97 between the observation O and the reconstruction
O), with a sparse input u driving the latent trajectories z for the non-linear RNN. (B) PCA projections
of the posture time series (left) and latent state (right) color-coded according to bout category. (C)
Performance of linear classifier to predict the movement category using latent or posture data.

setting the initial conditions for the latent dynamical system. After this point, the bout was then
generated by quasi-autonomous dynamics, before decaying back to a fixed point.

Most of the information to generate a movement was contained in this low-dimensional impulse.
Indeed, restricting the input to its initial peak was still sufficient to reconstruct bouts with R* = 0.82
across the test dataset. Following this initial state, the movement unfolds by following the learned flow
field. In the absence of an additional control signal, the trajectory in state space should therefore be
untangled, with similar positions in state space leading to similar patterns in the near future [5]. We
tested this in the models, by measuring how well we could decode the category of movement from a
single snapshot of the latent state (Fig. 2C.). In contrast to postural trajectories, which were highly
tangled, the low-tangling of the latent state space made it possible to classify movements accurately.
Surprisingly, the state space of the RNN 40ms after the control peak provided a higher classification
accuracy even when compared with a linear classifier trained on the full time series of tail movements
(Fig. 2C.). It demonstrates the quality of the representation of the movement within the latent space.

To benchmark our method, we used LFADS [6] with an autoregressive prior for the control signal.
The method successfully reconstructed the postural observation (R? = 0.94). However, we observed
that in this regime, the latent dynamical system was predominantly input-driven. Indeed, we found
a projection of the control signal displaying a correlation of r= 0.73 with the postural time series.
This leakage from the input data resulted in a less informative dynamical system, as measured by
the classification accuracy of the movement category from the latent trajectory(Fig. 2C.). This result
suggests that for low-dimensional behavioral observation, sparse input priors are better suited to learn
a meaningful dynamical system.

Control of spatial navigation The control signal accounts for the influence of sensory and decision-
making areas. As such, this signal is expected to encode information relative to navigational landmarks
such as the relative position of a prey that the fish want to capture. We propose that a straightforward
mapping exists between the control impulse and the ensuing fish trajectory. This proposal is non-
trivial, as our training dataset contained only posture information. Nonetheless, we found that spatial
displacement can be linearly predicted from the initial latent state (R? = 0.9 for turn direction, R? = 0.9
for turn yaw and R? = 0.72 for swim distance). The control signal and dynamic inferred by our method
therefore allow for a simple sensorimotor coupling.
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